28 research outputs found

    Andrews Graduates Receive Awards at Film Festival

    Get PDF
    Hintergrund: Am Helmholtz-Zentrum für Umweltforschung - UFZ arbeiten Forschende an Fragestellungen, die sich u.a. mit den aktuellen Veränderungen des Klimas und dessen Auswirkungen auf die Landnutzung beschäftigen. Dazu werden an verschiedenen Orten eine Vielzahl unterschiedlichster Umweltparameter mit Sensoren erfasst. Diese Daten werden kontinuierlich erhoben, um die Veränderungen möglichst in Echtzeit zu beobachten (Monitoring). Teilweise kommen pro Beobachtungsort mehrere Hunderte solcher Sensoren zum Einsatz. Die dafür eingesetzten Sensoren erfassen z.B. Bodenfeuchte, Niederschlagsmenge, Strahlungen und andere abiotische Kenngrößen. Damit die Daten (nach)nutzbar sind, müssen sie so aufbereitet und beschrieben werden, dass sie für nachfolgende Prozesse maschinen-lesbar bearbeitet werden können und in einer Form vorliegen, die eine Veröffentlichung nach den FAIR-Prinzipien ermöglicht. Herausforderung: Die erhobenen Messdaten müssen nicht nur gesichert werden, sondern auch auf Plausibilität geprüft, prozessiert und mit hinreichender Detailtiefe beschrieben werden, damit sie nachfolgend den Forschenden für die Beantwortung ihrer Forschungsfragen als Grundlage zur Verfügung stehen. Eine Herausforderung dabei ist, dass die Daten kontinuierlich als Datenstrom anfallen. Folglich müssen Prozesse wie die strukturierte Ablage, die Anreicherung mit Metadaten sowie Prüfung auf Fehlmessungen (sog. Qualitätssicherung) automatisiert werden. Aufgrund der Heterogenität der Sensoren (unterschiedliche Hersteller stellen Daten in unterschiedlichen Formaten zur Verfügung) muss bei diesen Prozessen auch eine Formatumwandlung erfolgen. Darüber hinaus sind je nach Messgröße und -verfahren verschiedene Methoden zur Plausibiläts- und Qualitätsprüfung anzuwenden. Lösungsansatz: Das Research Data Management Team des UFZ hat gemeinsam mit der IT-Abteilung einen Daten-Workflow entwickelt, der die unterschiedlichen Daten automatisch zusammenführt, sichert und nach einem vordefinierten Schema mit Metadaten anreichert. Der Einsatz des Workflows wird exemplarisch anhand von aktuellen Forschungsprojekten vorgestellt und die darin enthaltenen Schritte detailliert beschrieben, wobei auch auf die technische Umsetzung eingegangen wird. Insbesondere werden die Komponenten zur Datenstrukturierung und semiautomatischen Qualitätssicherung vorgestellt, bei denen auch Methoden des Machine Mearning zum Einsatz kommen. Innerhalb des Workflows können die prozessierten Daten nach verschieden Verfahren aggregiert und weiterverarbeitet werden. Das geschieht u.a. über definierte Schnittstellen zu internen und externen Services (z.B. durch Bereitstellung als Sensor Observation Service (SOS) oder mittels einer API). Fazit: Die im Rahmen des hier vorgestellten Workflows entwickelten Prozesse und Komponenten zum automatisierten Management von Forschungsdaten bilden eine wichtige Grundlage für das Forschungsdatenmanagement am UFZ. Durch die modulare Ausgestaltung können die Komponenten an den Bedarf der Forschenden angepasst werden und sind auch für Szenarien geeignet, in denen die Messdaten nicht als Datenstrom anfallen. Mit diesem Workflow ist die Voraussetzung geschaffen, die am UFZ erhobene Daten auch als Linked Data der wissenschaftlichen Community und anderen Stakeholdern zur Verfügung zu stellen

    Data science for environmental health

    Get PDF
    Ecosystems fulfill a whole host of ecosystem functions that are essential for life on our planet. However, an unprecedented level of anthropogenic influences is reducing the resilience and stability of our ecosystems as well as their ecosystem functions. The relationships between drivers, stress and ecosystem functions in ecosystems are complex, multi- faceted and often non-linear and yet environmental managers, decision makers and politicians need to be able to make rapid decisions that are data-driven and based on short- and long-term monitoring information, complex modeling and analysis approaches. A huge number of long-standing and standardized ecosystem health approaches like the essential variables already exist and are increasingly integrating remote-sensing based monitoring approaches [1-2]. Unfortunately, these approaches in monitoring, data storage, analysis, prognosis and assessment still do not satisfy the future requirements of information and digital knowledge processing of the 21st century. This presentation therefore discusses the requirements for using Data Science as a bridge between complex and multidimensional Big Data for environmental health. It became apparent that no existing monitoring approach, technique, model or platform is sufficient on its own to monitor, model, forecast or assess vegetation health and its resilience. In order to advance the development of a multi-source ecosystem health monitoring network, we argue that in order to gain a better understanding of ecosystem health in our complex world it would be conducive to implement the concepts of Data Science with the components: (i) digitalization, (ii) standardization with metadata management adhering to the FAIR (Findability, Accessibility, Interoperability, and Reusability) principles, (iii) Semantic Web, (iv) proof, trust and uncertainties, (v) complex tools for Data Science analysis and (vi) easy tools for scientists, data managers and stakeholders for decision-making support [3-4]. REFERENCES: 1.Lausch, A., Bannehr, L., Beckmann, M., Boehm, C., Feilhauer, H., Hacker, J.M., Heurich, M., Jung, A., Klenke, R., Neumann, C., Pause, M., Rocchini, D., Schaepman, M.E.; Schmidtlein, S., Schulz, K., Selsam, P., Settele, J., Skidmore, A.K., Cord, A.F., 2016. Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecol. Indic. 70, 317–339. doi:10.1016/j.ecolind.2016.06.022. 2.Lausch, A., Erasmi, S., Douglas, J., King, Magdon, P., Heurich, M., 2016. Understanding forest health with remote sensing - Part I - A review of spectral traits, processes and remote sensing characteristics. Remote Sens. 8, 1029; doi:10.3390/rs8121029. 3.Lausch, A.; Bastian O.; Klotz, S.; Leitão, P. J.; Jung, A.; Rocchini, D.; Schaepman, M.E.; Skidmore, A.K.; Tischendorf, L.; Knapp, S. 2018. Understanding and assessing vegetation health by in-situ species and remote sensing approaches. Methods Ecol. Evol. 00, 1–11. doi:10.1111/2041-210X.13025. 4.Lausch, A., Borg, E., Bumberger, J., Dietrich, P., Heurich, M., Huth, A., Jung, A., Klenke, R., Knapp, S., Mollenhauer, H., Paasche, H., Paulheim, H., Pause, P., Schweitzer, C., Schmulius, C., Settele, J., Skidmore, A.K.,, Wegmann, M., Zacharias, S., Kirsten, T.; Schaepman, M.E., 2018. Understanding forest health with remote sensing -Part III - Requirements for a scalable multi-source forest health monitoring network based on Data Science approaches. (Remote Sens., in review)

    Correction to: A Range of Earth Observation Techniques for Assessing Plant Diversity

    Get PDF
    The original version of this book was inadvertently published with an incorrect affiliation

    Ground Truth Validation of Sentinel-2 Data Using Mobile Wireless Ad Hoc Sensor Networks (MWSN) in Vegetation Stands

    Get PDF
    Satellite-based remote sensing (RS) data are increasingly used to map and monitor local, regional, and global environmental phenomena and processes. Although the availability of RS data has improved significantly, especially in recent years, operational applications to derive value-added information products are still limited by close-range validation and verification deficits. This is mainly due to the gap between standardized and sufficiently available close-range and RS data in type, quality, and quantity. However, to ensure the best possible linkage of close-range and RS data, it makes sense to simultaneously record close-range data in addition to the availability of environmental models. This critical gap is filled by the presented mobile wireless ad hoc sensor network (MWSN) concept, which records sufficient close-range data automatically and in a standardized way, even at local and regional levels. This paper presents a field study conducted as part of the Durable Environmental Multidisciplinary Monitoring Information Network (DEMMIN), focusing on the information gained with respect to estimating the vegetation state with the help of multispectral data by simultaneous observation of an MWSN during a Sentinel-2A (S2A) overflight. Based on a cross-calibration of the two systems, a comparable spectral characteristic of the data sets could be achieved. Building upon this, an analysis of the data regarding the influence of solar altitude, test side topography and land cover, and sub-pixel heterogeneity was accomplished. In particular, variations due to spatial heterogeneity and dynamics in the diurnal cycle show to what extent such complementary measurement systems can improve the data from RS products concerning the vegetation type and atmospheric conditions

    Remote sensing of geomorphodiversity linked to biodiversity — part III: traits, processes and remote sensing characteristics

    Get PDF
    Remote sensing (RS) enables a cost-effective, extensive, continuous and standardized monitoring of traits and trait variations of geomorphology and its processes, from the local to the continental scale. To implement and better understand RS techniques and the spectral indicators derived from them in the monitoring of geomorphology, this paper presents a new perspective for the definition and recording of five characteristics of geomorphodiversity with RS, namely: geomorphic genesis diversity, geomorphic trait diversity, geomorphic structural diversity, geomorphic taxonomic diversity, and geomorphic functional diversity. In this respect, geomorphic trait diversity is the cornerstone and is essential for recording the other four characteristics using RS technologies. All five characteristics are discussed in detail in this paper and reinforced with numerous examples from various RS technologies. Methods for classifying the five characteristics of geomorphodiversity using RS, as well as the constraints of monitoring the diversity of geomorphology using RS, are discussed. RS-aided techniques that can be used for monitoring geomorphodiversity in regimes with changing land-use intensity are presented. Further, new approaches of geomorphic traits that enable the monitoring of geomorphodiversity through the valorisation of RS data from multiple missions are discussed as well as the ecosystem integrity approach. Likewise, the approach of monitoring the five characteristics of geomorphodiversity recording with RS is discussed, as are existing approaches for recording spectral geomorhic traits/ trait variation approach and indicators, along with approaches for assessing geomorphodiversity. It is shown that there is no comparable approach with which to define and record the five characteristics of geomorphodiversity using only RS data in the literature. Finally, the importance of the digitization process and the use of data science for research in the field of geomorphology in the 21st century is elucidated and discussed

    Mobile Wireless Sensor Networks for Ground Truthing Multispectral Remotely Sensed Data

    Get PDF
    Inferring conditions about the earth’s surface using remotely sensed electro-optical measurements almost always requires the use of ground truth data. Due to the heterogeneity and diversity of the land cover, as well as the distinctions in spectral and geometric resolution of various remote sensing applications an adaptive ground-based reference system is required for an adequate calibration and Validation of the data. Wireless sensor networks are a promising application for a sufficient solution of ground truthing multispectral remotely sensed data. Due to the quick installation and their self-organising behaviour iterative optimal sampling strategies can be performed straightforward. Especially the improvement of atmospheric corrections as well as resampling algorithms of single multispectral channels or derived vegetation indices are great potentials for the data quality management of remote sensing products

    Vom Sensor zum Forschungsdatensatz: Automatisierte Datenflüsse am UFZ

    No full text
    Hintergrund: Am Helmholtz-Zentrum für Umweltforschung - UFZ arbeiten Forschende an Fragestellungen, die sich u.a. mit den aktuellen Veränderungen des Klimas und dessen Auswirkungen auf die Landnutzung beschäftigen. Dazu werden an verschiedenen Orten eine Vielzahl unterschiedlichster Umweltparameter mit Sensoren erfasst. Diese Daten werden kontinuierlich erhoben, um die Veränderungen möglichst in Echtzeit zu beobachten (Monitoring). Teilweise kommen pro Beobachtungsort mehrere Hunderte solcher Sensoren zum Einsatz. Die dafür eingesetzten Sensoren erfassen z.B. Bodenfeuchte, Niederschlagsmenge, Strahlungen und andere abiotische Kenngrößen. Damit die Daten (nach)nutzbar sind, müssen sie so aufbereitet und beschrieben werden, dass sie für nachfolgende Prozesse maschinen-lesbar bearbeitet werden können und in einer Form vorliegen, die eine Veröffentlichung nach den FAIR-Prinzipien ermöglicht. Herausforderung: Die erhobenen Messdaten müssen nicht nur gesichert werden, sondern auch auf Plausibilität geprüft, prozessiert und mit hinreichender Detailtiefe beschrieben werden, damit sie nachfolgend den Forschenden für die Beantwortung ihrer Forschungsfragen als Grundlage zur Verfügung stehen. Eine Herausforderung dabei ist, dass die Daten kontinuierlich als Datenstrom anfallen. Folglich müssen Prozesse wie die strukturierte Ablage, die Anreicherung mit Metadaten sowie Prüfung auf Fehlmessungen (sog. Qualitätssicherung) automatisiert werden. Aufgrund der Heterogenität der Sensoren (unterschiedliche Hersteller stellen Daten in unterschiedlichen Formaten zur Verfügung) muss bei diesen Prozessen auch eine Formatumwandlung erfolgen. Darüber hinaus sind je nach Messgröße und -verfahren verschiedene Methoden zur Plausibiläts- und Qualitätsprüfung anzuwenden. Lösungsansatz: Das Research Data Management Team des UFZ hat gemeinsam mit der IT-Abteilung einen Daten-Workflow entwickelt, der die unterschiedlichen Daten automatisch zusammenführt, sichert und nach einem vordefinierten Schema mit Metadaten anreichert. Der Einsatz des Workflows wird exemplarisch anhand von aktuellen Forschungsprojekten vorgestellt und die darin enthaltenen Schritte detailliert beschrieben, wobei auch auf die technische Umsetzung eingegangen wird. Insbesondere werden die Komponenten zur Datenstrukturierung und semiautomatischen Qualitätssicherung vorgestellt, bei denen auch Methoden des Machine Mearning zum Einsatz kommen. Innerhalb des Workflows können die prozessierten Daten nach verschieden Verfahren aggregiert und weiterverarbeitet werden. Das geschieht u.a. über definierte Schnittstellen zu internen und externen Services (z.B. durch Bereitstellung als Sensor Observation Service (SOS) oder mittels einer API). Fazit: Die im Rahmen des hier vorgestellten Workflows entwickelten Prozesse und Komponenten zum automatisierten Management von Forschungsdaten bilden eine wichtige Grundlage für das Forschungsdatenmanagement am UFZ. Durch die modulare Ausgestaltung können die Komponenten an den Bedarf der Forschenden angepasst werden und sind auch für Szenarien geeignet, in denen die Messdaten nicht als Datenstrom anfallen. Mit diesem Workflow ist die Voraussetzung geschaffen, die am UFZ erhobene Daten auch als Linked Data der wissenschaftlichen Community und anderen Stakeholdern zur Verfügung zu stellen

    Spatial Retrieval of Broadband Dielectric Spectra

    Get PDF
    A broadband soil dielectric spectra retrieval approach ( 1 MHz– 2 GHz) has been implemented for a layered half space. The inversion kernel consists of a two-port transmission line forward model in the frequency domain and a constitutive material equation based on a power law soil mixture rule (Complex Refractive Index Model - CRIM). The spatially-distributed retrieval of broadband dielectric spectra was achieved with a global optimization approach based on a Shuffled Complex Evolution (SCE) algorithm using the full set of the scattering parameters. For each layer, the broadband dielectric spectra were retrieved with the corresponding parameters thickness, porosity, water saturation and electrical conductivity of the aqueous pore solution. For the validation of the approach, a coaxial transmission line cell measured with a network analyzer was used. The possibilities and limitations of the inverse parameter estimation were numerically analyzed in four scenarios. Expected and retrieved layer thicknesses, soil properties and broadband dielectric spectra in each scenario were in reasonable agreement. Hence, the model is suitable for an estimation of in-homogeneous material parameter distributions. Moreover, the proposed frequency domain approach allows an automatic adaptation of layer number and thickness or regular grids in time and/or space
    corecore